什么是光學(xué)折射系統(tǒng)?光學(xué)折射系統(tǒng)原理分析
光學(xué)折射系統(tǒng)是一種利用透鏡或反射鏡的折射和反射原理來操縱光線的光學(xué)裝置。這類系統(tǒng)通過改變光線的傳播方向和聚焦特性,實(shí)現(xiàn)對光束的控制和成像。伽利略望遠(yuǎn)鏡作為一種典型的光學(xué)折射系統(tǒng),其結(jié)構(gòu)由一個(gè)正透鏡(物鏡)和一個(gè)負(fù)透鏡(目鏡)組成,能夠?qū)崿F(xiàn)對遠(yuǎn)處物體的放大觀察。
伽利略望遠(yuǎn)鏡的工作原理基于透鏡的光焦度(φ),即透鏡對光線的折射能力。系統(tǒng)的光學(xué)方程式可表示為:
φL1+φL2–φL1φL2D=0
其中φL1—透鏡1(正透鏡)的光焦度,φL2—透鏡2(負(fù)透鏡)的光焦度,D—鏡片間隔。如果從負(fù)透鏡射出的光線在工作溫度范圍內(nèi)保持準(zhǔn)直,其被認(rèn)為是被動無熱化的設(shè)計(jì)。在一些要求更高的應(yīng)用中,可以指定在溫度范圍內(nèi)放大倍率變化量作為條件進(jìn)行進(jìn)一步約束。
望遠(yuǎn)鏡中透鏡光學(xué)材料和鏡筒的CTE和TCR如下表所示。在本例中,準(zhǔn)直的近軸變化需要控制在18μrad以內(nèi)(在衍射極限范圍內(nèi),四分之一波長),–10°C和50°C下的像差曲線如下圖。
本例選擇的外殼材料是殷鋼,與鋁或其他金屬相比,這種材料具有非常低的膨脹系數(shù)。正物鏡為球面透鏡,由硅制成,具有較小的膨脹系數(shù)和中等大的正折射熱系數(shù),隨著溫度的升高,鏡頭會變得更加正;負(fù)鍺透鏡具有較小的膨脹系數(shù)和較大的正折射熱系數(shù),隨著溫度的升高,負(fù)透鏡變得更加負(fù)。因此,當(dāng)兩者按配合使用并安裝在殷鋼的鏡筒中時(shí),它們的尺寸和材料變化會相互抵消,從而使出射光束保持準(zhǔn)直狀態(tài)。此外,放大倍率的變化僅為0.3%左右。
通過選擇與制造光學(xué)零件(反射鏡)材料相同的鏡筒材料,選擇光學(xué)零件特性來補(bǔ)償鏡筒材料的熱效應(yīng),以及選擇鏡筒材料來補(bǔ)償光學(xué)零件的光學(xué)特性,可以實(shí)現(xiàn)光學(xué)設(shè)備的被動無熱化。
▍最新資訊
-
相量熱成像技術(shù)取得新突破:賦能生命體征監(jiān)測與早期疾病檢測領(lǐng)域
近年來,熱成像技術(shù)在醫(yī)療領(lǐng)域的應(yīng)用不斷拓展,但傳統(tǒng)熱成像技術(shù)在檢測細(xì)微溫度變化和復(fù)雜環(huán)境下的精確性方面仍存在局限。如今,佐治亞理工學(xué)院(Georgia Tech)的研究團(tuán)隊(duì)通過開發(fā)一種名為相量熱成像技術(shù)(Phasor Thermo graphy,PTG)的新型方法,成功克服了這些挑戰(zhàn),為生命體征監(jiān)測和早期疾病檢測開辟了新的可能性。
2025-04-02
-
熒光顯微鏡與激光共聚焦顯微鏡的異同
在細(xì)胞形態(tài)學(xué)研究中,熒光顯微鏡和激光共聚焦顯微鏡是兩種常用的設(shè)備。雖然它們都利用熒光信號進(jìn)行成像,但兩者在光源、成像方式、分光方式、檢測器和針孔設(shè)計(jì)上存在顯著差異,這些差異直接影響了它們的成像質(zhì)量和適用場景。本文將詳細(xì)比較這兩種顯微鏡的異同,并探討它們在實(shí)際應(yīng)用中的優(yōu)劣勢。
2025-04-02
-
融合偏振與偏折信息的鏡面三維成像技術(shù)獲得突破與相關(guān)應(yīng)用
近年來,光學(xué)成像技術(shù)在多個(gè)領(lǐng)域取得了顯著進(jìn)展,而鏡面三維成像技術(shù)作為其中的重要分支,正逐漸成為研究的熱點(diǎn)。近日,一項(xiàng)關(guān)于融合偏振與偏折信息的鏡面三維成像技術(shù)的研究成果引發(fā)了廣泛關(guān)注。這項(xiàng)技術(shù)通過結(jié)合偏振和偏折信息,不僅顯著提高了鏡面物體的三維成像精度,還為工業(yè)檢測、醫(yī)療成像和科學(xué)研究等領(lǐng)域提供了全新的解決方案。
2025-04-02
-
光模塊種類大全、速率發(fā)展、分類及應(yīng)用場景解析
在現(xiàn)代通信網(wǎng)絡(luò)中,光模塊扮演著至關(guān)重要的角色,它如同一位不知疲倦的信使,將電信號轉(zhuǎn)化為光信號,在光纖中飛馳,實(shí)現(xiàn)信息的高速傳遞。從1G到800G,光模塊的演進(jìn)不僅是技術(shù)的進(jìn)步,更是人類對速度與效率追求的生動寫照。
2025-04-01